Exposure of Unwounded Plants to Chemical Cues Associated with Herbivores Leads to Exposure-Dependent Changes in Subsequent Herbivore Attack
نویسنده
چکیده
Although chemical predator cues often lead to changes in the anti-predator behavior of animal prey, it is not clear whether non-volatile herbivore kairomones (i.e. incidental chemical cues produced by herbivore movement or metabolism but not produced by an attack) trigger the induction of defense in plants prior to attack. I found that unwounded plants (Brassica nigra) that were regularly exposed to kairomones from snails (mucus and feces produced during movement of Helix aspersa) subsequently experienced reduced rates of attack by snails, unlike unwounded plants that received only one initial early exposure to snail kairomones. A follow-up experiment found that mucus alone did not affect snail feeding on previously harvested B. oleracea leaves, suggesting that changes in herbivory on B. nigra were due to changes in plant quality. The finding that chemicals associated with herbivores leads to changes in palatability of unwounded plants suggests that plants eavesdrop on components of non-volatile kairomones of their snail herbivores. Moreover, this work shows that the nature of plant exposure matters, supporting the conclusion that plants that have not been attacked or wounded nonetheless tailor their use of defenses based on incidental chemical information associated with herbivores and the timing with which cues of potential attack are encountered.
منابع مشابه
Similar Metabolic Changes Induced by HIPVs Exposure as Herbivore in Ammopiptanthus mongolicus
Herbivore-induced plant volatiles (HIPVs) are important compounds to prim neighboring undamaged plants; however, the mechanism for this priming process remains unclear. To reveal metabolic changes in plants exposed to HIPVs, metabolism of leaves and roots of Ammopiptanthus mongolicus seedlings exposed to HIPVs released from conspecific plants infested with larvae of Orgyia ericae were analyzed ...
متن کاملThe products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores.
Plants can defend themselves against herbivores by attracting natural enemies of the herbivores. The cues for attraction are often complex mixtures of herbivore-induced plant volatiles, making it difficult to demonstrate the role of specific compounds. After herbivory by lepidopteran larvae, maize releases a mixture of volatiles that is highly attractive to females of various parasitic wasp spe...
متن کاملPlant defense priming against herbivores: getting ready for a different battle.
Plants have evolved various strategies to defend themselves against herbivores and pathogens. Although some of these strategies are constitutive, i.e. present at all times, others are induced only in response to herbivore feeding or pathogen infection. The induction of direct and indirect plant defenses in response to herbivory and other biotic stresses is well established (Karban and Baldwin, ...
متن کاملParasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles.
Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant-herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube ...
متن کاملNew evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.
A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studi...
متن کامل